Skip to main content
  Pearl2324
  • Categories
    All categories
    Ijazah Sarjana Muda Sains (...
    Ijazah Sarjana Muda Sains (.../Bidang Biologi
    Ijazah Sarjana Muda Sains (.../Bidang Fizik
    Ijazah Sarjana Muda Sains (.../Bidang Kimia
    Ijazah Sarjana Muda Sains (.../Bidang Matematik
    Ijazah Sarjana Muda Sastera...
    Ijazah Sarjana Muda Sastera.../Bidang Geografi
    Ijazah Sarjana Muda Sastera.../Bidang Kesusasteraan
    Ijazah Sarjana Muda Sastera.../Bidang Sejarah
    Ijazah Sarjana Muda Sains K...
    Ijazah Sarjana Muda Sains K.../Bidang Antropologi-Sosiolog...
    Ijazah Sarjana Muda Sains K.../Bidang Ekonomi
    Ijazah Sarjana Muda Sains K.../Bidang Sains Politik
    Ijazah Sarjana Muda Penguru...
    Kursus Universiti
    Kimia Teknologi dan Lestari
    PJJ@USM 101 Pendidikan Sepa...
  • Home
  • Web Links
    Laman Web USM Laman Web PPPJJ CampusOnline Student Email Bhg.Pengurusan Akademik e-Pos PPPJJ
    Perpustakaan ebrary Online Tutorials Citation Style
  • Bahan Muat Turun
    Borang Menukar Kod Jenis Kursus Borang Melapor/Menukar Major-Minor Borang Penangguhan Pengajian
    Panduan Pendaftaran Akaun Identiti Panduan Pengaktifan Akaun Identiti Panduan Akses Campusonline Panduan Penggunaan Aplikasi Webex Panduan Konfigurasi WiFi (Win 10)
    Adobe Reader
  • Penilaian Pengajaran
  • Aduan/Bantuan
    Aduan Bantuan
You are currently using guest access
Log in
  Pearl2324
Categories Collapse Expand
All categories
Ijazah Sarjana Muda Sains (...
Ijazah Sarjana Muda Sains (.../Bidang Biologi
Ijazah Sarjana Muda Sains (.../Bidang Fizik
Ijazah Sarjana Muda Sains (.../Bidang Kimia
Ijazah Sarjana Muda Sains (.../Bidang Matematik
Ijazah Sarjana Muda Sastera...
Ijazah Sarjana Muda Sastera.../Bidang Geografi
Ijazah Sarjana Muda Sastera.../Bidang Kesusasteraan
Ijazah Sarjana Muda Sastera.../Bidang Sejarah
Ijazah Sarjana Muda Sains K...
Ijazah Sarjana Muda Sains K.../Bidang Antropologi-Sosiolog...
Ijazah Sarjana Muda Sains K.../Bidang Ekonomi
Ijazah Sarjana Muda Sains K.../Bidang Sains Politik
Ijazah Sarjana Muda Penguru...
Kursus Universiti
Kimia Teknologi dan Lestari
PJJ@USM 101 Pendidikan Sepa...
Home Web Links Collapse Expand
Laman Web USM Laman Web PPPJJ CampusOnline Student Email Bhg.Pengurusan Akademik e-Pos PPPJJ Perpustakaan ebrary Online Tutorials Citation Style
Bahan Muat Turun Collapse Expand
Borang Menukar Kod Jenis Kursus Borang Melapor/Menukar Major-Minor Borang Penangguhan Pengajian Panduan Pendaftaran Akaun Identiti Panduan Pengaktifan Akaun Identiti Panduan Akses Campusonline Panduan Penggunaan Aplikasi Webex Panduan Konfigurasi WiFi (Win 10) Adobe Reader
Penilaian Pengajaran Aduan/Bantuan Collapse Expand
Aduan Bantuan
  Pearl2324
  1. PJJ@USM 101
  2. Systems of Linear Equations
PJJ@USM 101 Pendidikan Sepanjang Hayat

Image: 1684740260826.jfif, by DR. DARWALIS BINTI SAZAN

Folder

Systems of Linear Equations

Back to course
Completion requirements
View
22
Topic 1.1 Systems of Linear Equations  SLT
 
Video
Please watch the video on Systems of Linear Equations.

8 mins
Notes 1.1
Please download and read Notes 1.1
30 mins
Activity 1.1
Please complete Activity 1.1
60 mins


Activity 1.1


Let's explore some questions and solutions related to systems of linear equations.


Question 1:


System of Equations: Solve the following system of linear equations:

2 x + y = 5

  

3 x − 2 y = 8

 

Solution: To solve the system, we can use methods like substitution or elimination. Let's use the substitution method for this example.

From the first equation, solve for y:


y = 5 − 2 x

  

Substitute this expression for 

y

into the second equation:

3 x − 2 ( 5 − 2 x ) = 8

3x−2(5−2x)=8

Simplify and solve for x:



3 x − 10 + 4 y = 8

 

7 x − 10 = 8

 

7 x = 18

 

x = 18 7

​ 

Now substitute x back into the first equation to find y:


2 ( 18 7 ) + y = 5

 

36 7 + y = 5


y = 35 7 − 36 7


y = − 1 7


So, the solution is 

x = 18 7

​ and 

y = − 1 7


Question 2:


System of Equations: Solve the system of linear equations:

4 x − 2 y = 10

 

2 x + 3 y = 1

 

Solution: Let's use the elimination method for this example. Multiply the first equation by 2 to make the coefficients of x in both equations the same:

8 x − 4 y = 20

 

2 x + 3 y = 1


Now subtract the second equation from the first:

8 x − 4 y − ( 2 x + 3 y ) = 20 − 1

 

6 x − 7 y = 19

  

Solve this equation for x:

6 x = 7 y + 19

 

x = 7 6 y + 19 6

 

Substitute this expression for x back into the second equation:

2 ( 7 6 y + 19 6 ) + 3 y = 1


Solve for y and then substitute it back into the expression for x.

The solution is 

x = 7 6 y + 19 6


and y is a free parameter.


Question 3:


System of Equations: Solve the following system:

3 x − y = 7

 

2 x + 4 y = 2



Solution: Let's use the substitution method. Solve the first equation for y:

y = 3 x − 7


Substitute this expression for y into the second equation:

2 x + 4 ( 3 x − 7 ) = 2

 

Simplify and solve for x:

2 x + 12 x − 28 = 2

 

14 x = 30

 

x = 15 7

 ​ 

Now substitute x back into the first equation to find y:

3 ( 15 7 ) − y = 7

 

45 − 7 y = 7

 

7 y = 38


y = 38 7


So, the solution is 

x = 15 7

​ and 

y = 38 7


These questions cover different methods for solving systems of linear equations. If you have more questions or if there's a specific aspect you'd like to explore, feel free to ask!





Prev Section
Next Activity

Back to course
Contact site support
You are currently using guest access (Log in)
Get the mobile app
Powered by Moodle









  Pearl2324
Privacy Policy Terms & Conditions

Pearl PPPJJ 2023/2024 © 2025. All rights reserved.